SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583	
QUESTION BANK (DESCRIPTIVE)	
Subject with Code: MATHEMATICS-III (18HS0834)Branch:B.Tech(ECE)Year & Sem: II-B.Tech&I-SemRegulation:R18	
<u>UNIT –I</u>	
<u>NUMERICAL METHOD -I</u>	
 a) Write the formula to find the root of an equation by Regula Falsi method b) Write Simpson formulae c) Write the formula to find a cube root of a number by Newton Raphson's method d) Evaluate Δ tan⁻¹ x e) Construct a forward difference table for the function y = x³ for x = 0, 1,2,3,4,5. Find a positive rootofx³-x -1 = 0 correct to two decimal places by Bisection method. 	[2M] [2M] [2M] [2M] [2M]
Find out the root of the equation Find the root of the equation Find the root of the equation Find a real root of the equation Find a root of the equati	[10 M] [10 M] [10 M]
(i)Find square root of 28. (ii)Find cube root of 15. From the following table values of x and $y = tanx$ interpolate values of y when x = 0.12 and x = 0.28 x = 0.10 0.15 0.20 0.25 0.30 y = tanx = 0.28	[10 M]
a) Using Newton's forward interpolation formula and the given table of values $\frac{x 1.1 1.3 1.5 1.7 1.9}{f(x) 0.21 0.69 1.25 1.89 2.61}$	
Obtain the value of $f(x)$ when $x=1.4$ b) Use Newton's backward interpolation formula to find $f(32)$	[5M
given f(25) = 0.2707, f(30) = 0.3027 f(35) = 0.3386, f(40) = 0.3794	[5M
Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ (i) By trapezoidal rule and Simpson's $\frac{1}{3}$ rule	[5M
ii)Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value	[5M
a) Compute $\int_{0}^{4} a^{x} dx$ by Simmon's $\frac{1}{2}$ rule with 10 sub divisions	[5M

[Type text]					
b) Compute	$\int_{3}^{7} x^{2} \log x dx$ using trapezoidal rule and Simpson's rule by taking 10 sub divisions.	[5M]			
MATH	EMATICS-III				

		1			
SIDDHARTH GROUP OF INSTITU Siddharth Nagar, Narayanavanam I	TIONS: PUTTUR Road – 517583				
QUESTION BANK (DESCRIPTIVE)					
Subject with Code: MATHEMATICS-III (18HS0834) Year &Sem: II-B.Tech& I-Sem	Branch: B.Tech (ECE) Regulation: R18				
<u>UNIT –II</u> NUMERICAL METHO)D-II				
 a)write R-K method of 4th order formula b)write the diagonal five-point formula 		[2M] [2M]			
c)write the Taylor's series solution of $y' = -xy$, y(0)=1upto x^4 d) Write the standard five-point formula		[2M] [2M]			
e)Use Euler's method to find y(0.1) given $y' = (x^3 + xy^2)e^{-x}$,	y(0) = 1 5	[2M]]			
2 a) tabulate y (0.1), y (0.2), and y (0.3) using Taylor's series met $y^1 = y^2 + x$ And $y(0) = 1$	• [N thod given that	1 [5M]			
b)Using Euler's method, find an approximate value of y correspon	nding to $x = 1$ given that $\frac{dy}{dx} = x + \frac{dy}{dx}$	- y			
and $y = 1$ when $x = 0$.		[5M]			
[5M] 3 Using Taylor's series method find an approximate value of y at x $y^1 - 2y = 3e^x$, $y(0) = 0$. Compare the numerical solution obtain	x = 0.2 for the D.E ned with exact solution.	[10M]			
4a) Solve $y^1 = x + y^2$, given y (1)=0 find y(1.1) and y(1.2) by Tayl b) Solve by Euler's method	lor's series method	[5M] [5M]			
$\frac{dy}{dx} = \frac{2y}{x} \text{ given } y(1) = 2 \text{ and find } y(2).$					
5. Using R-K method of 4 th order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0)=1 Fin	nd y(0.2) and y(0.4) [10 M]				
6. Using R-K method of 4^{th} order find $y(0.1), y(0.2)$ and $y(0.3)$ give	en that $\frac{dy}{dx} = 1 + xy, y(0) = 2$	[10M]			
7. A) Using Runge-Kutta method of fourth order, compute y(0.2) f y (0)=1, taking h=0.2 [5M]	from $y^1 = xy$				
b) Using Euler's method $y' = y^2 + x$, $y(0)=1$. Find $y(0.1)$ and $y(0.1)$	0.2)	[5M]			
8) Solve $y'' - x(y')^2 + y^2 = 0$ using R-K method of 4 th order for $x = [10M]$	= 0.2 given y(0) = 1, y ¹ (0)=0 takin	g h=0.2			
MATHEMATICS-III					

8. a) Find the Inverse Laplace transform of $\frac{1}{s^2(s^2+a^2)}$. [5 M]

b) Find
$$L^{-1}\left\{\log\left(\frac{s-1}{s+1}\right)\right\}$$
 [5 M]

9. Using Laplace transform method to solve $y^{11} - 3y^1 + 2y = 4t + e^{3t}$ where $y(0) = 1, y^1(0) = 1$ [10M]

10. Solve the D.E
$$\frac{d^2x}{dt^2} + 9x = \sin t$$
 using Laplace Transform given that
 $x(0) = 1, x\left(\frac{\pi}{2}\right) = 1$
[10M]

MATHEMATICS-III

$\underline{UNIT} - IV$

TRANSFORMS CALCULUS-II

1.	a) Define Fourier sine and cosine transforms	[2M]
	b) Find the Fourier sine transform of $\frac{1}{x}$	[2M]
	c) Define the inverse Fourier sine and cosine transforms	[2M]
	 d) Find the Fourier cosine transform of e^{-ax}, a > 0 and hence deduce the Inverse formula e) Find the finite Fourier sine transform of f(x) = 2x, 0 < x < 4. 	[2M] [2M]
2.	a) Express $f(x) = \begin{cases} 1, 0 \le x \le \pi \\ 0, x > \pi \end{cases}$ as a Fourier sine integral and hence evaluate	

$$\int_{0}^{\infty} \frac{1 - \cos(\pi \lambda)}{\lambda} \sin(x\lambda) d\lambda$$
[5M]

b) Prove that (i)
$$F_s \{a f(x) + b g(x)\} = a F_s(p) + b G_s(p)$$

(ii)
$$F_c \{ a f(x) + b g(x) \} = a F_c(p) + b G_c(p)$$
 [5M]

3. a) Prove that
$$F[x^n f(x)] = (-i)^n \frac{d^n}{dp^n} [F(p)]$$
 [5M]

b) Prove that
$$F_s \{ x f(x) \} = -\frac{d}{dp} [F_c(p)]$$
[5M]

4. Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, |x| < a \\ 0, |x| > a > 0 \end{cases}$ Hence show that

$$\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^{3}} dx = \frac{\pi}{4} \,.$$
[10M]

5. a)Find the Fourier transform of $f(x) = e^{-\frac{x^2}{2}}, -\infty < x < \infty$ [5M] b) If F(p) is the complex Fourier transform of f(x), then prove that the complex

Fourier transform of $f(x) \cos ax$ is $\frac{1}{2} [F(p+a) + F(p-a)]$ [5M]

6. a) Find the Fourier cosine transform of $e^{-ax} \cos ax, a > 0$ [5M]

b) Find the Fourier cosine transform of
$$f(x) = \begin{cases} x, for \ 0 < x < 1 \\ 2 - x, for \ 1 < x < 2 \\ 0, for \ x > 2 \end{cases}$$
 [5M]

7. Find the Fourier sine and cosine transforms of $f(x) = \frac{e^{-ax}}{x}$ and deduce that $\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \sin sx \, dx = \tan^{-1}\left(\frac{s}{a}\right) - \tan^{-1}\left(\frac{s}{b}\right).$

8. Find the Fourier sine and cosine transforms of $f(x) = e^{-ax}$, a > 0 and hence deduce the integrals

(i)
$$\int_{0}^{\infty} \frac{p \sin px}{a^{2} + p^{2}} dp$$
 (ii) $\int_{0}^{\infty} \frac{\cos px}{a^{2} + p^{2}} dp$ [10M]

[10M]

MATHEMATICS-III

9. Find the inverse Fourier sine transform of f(x) of $F_s(p) = \frac{p}{1+p^2}$ [10M]

10.a) Find the finite Fourier sine transform of f(x), defined by $\begin{cases} x, \ 0 \le x \le \frac{\pi}{2} \\ \pi - x, \ \frac{\pi}{2} \le x \le \pi \end{cases}$

 $x, \quad \frac{\pi}{2} \le x \le \pi$ [5M]

b) Find the inverse finite Fourier sine transform of f(x), If $F_s(n) = \frac{16(-1)^{n-1}}{n^3}$, where n is a Positive integer and 0 < x < 8.

[5M]

MATHEMATICS-III

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road - 517583 **OUESTION BANK (DESCRIPTIVE) Branch**: B.Tech(ECE) **Subject with Code :**MATHEMATICS-III(18HS0834) **Regulation:** R18 Year &Sem: II-B.Tech& I-Sem UNIT -- V PARTIAL DIFFERENCIAL EQUATIONS 1. a) Solve xp + yq = 3z. [2 M] b) Solve r + 6s + 9t = 0. [2 M] c) Solve p(1+q) = qz. [2 M] d) Solve $\frac{\partial^3 z}{\partial x^3} - 4 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial x \partial y^2} = 0.$ [2 M] e) Find the particular integral of the equation $4r + 12s + 9t = e^{3x-2y}$. [2 M] 2. a) Solve $(x^2 - y^2 - z^2)p + 2xyq = 2xz$. [5 M] b) Solve (z - y) p + (x - z)q = y - x. [5 M] 3. a) Solve x(y-z)p + y(z-x)q = z(x-y). [5 M] b) Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$. [5 M] 4. a) Solve $p^2 + q^2 = x + y$. [5 M] b) Solve $z^2(p^2x^2+q^2)=1$. [5 M] 5. a) Solve $r - 4s + 4t = e^{2x+y}$. [5 M] b) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = \cos(2x + y).$ [5 M] 6. a) Solve $(D^2 + 3DD' + 2D'^2)z = 24xy$. [5 M] b) Solve $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x} + 3x^2 y.$ [5 M] 7. a) Solve $(D^2 + 2DD' + D'^2 - 2D - 2D')z = \sin(x + 2y)$. [5 M] b) Solve $(D-D'-1)(D-D'-2) = e^{2x-y}$. [5 M] 8. A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $bsin^3\left(\frac{\pi x}{t}\right)$. Find the displacement y(x, t). [10 M] 9. A tightly stretched string with fixed end points x=0 and x=l is initially at rest in its equilibrium position. It is set vibrating by giving each point a velocity kx(l-x). Find the displacement of the string at any distance x from one end at any time t. [10 M] 10. A homogeneous rod of conducting material of length 100cm has its ends kept at zero temperature and the temperature initially is u(x, 0)=x $0 \leq x \leq 50$ =100-x, 50≤x≤100 Find the temperature u(x, t) at any time. [10 M] MATHEMATICS-III